對配水管和水池設計與布置的基本要求與原則為:1、配水管道應布置在水面以上,沿水流方向有0、001~0、002的坡度。2、配水管上應設閘閥,閘閥以暗桿式為宜,配水管末端應設管道沖洗和放空的堵頭。3、配水總管兩個固定支座之間應安裝伸縮節。4、配水管變徑處應采用偏心異徑管接頭,以利管道放空。5、每3~5排配水管之間應留寬為1、3~1、5倍配水管間距的空氣通道。6、噴水冷卻池應選擇在通風良好的地段,水池宜建成矩形,池寬不宜大于60m,最外側噴嘴距池邊不宜小于7m。在風速大的地方,可采用10~12m或更大。噴水池的長邊應與夏季主導風向垂直。7、水池一般應不少于兩格,當允許間歇使用時亦可用單格。8、水池通常為地下式或半地下式,水池池頂應高出地面0、3m。9、池底、池壁通常采用混凝土做護面,隔一定間距設伸縮縫,縫隙要防滲漏。10、水池設計水深宜為1、5~2、0m。當噴水池兼做其他用途時,水深可適當增加。噴水池的池壁應有不小于0、25m的超高。11、水池應有排污、放空與溢流裝置。池底有0、003~0、005的坡度,坡向放空管。12、水池周圍應設回水臺,其坡度根據風向、風速和噴嘴前水頭等因素確定。一般不宜小于3m?;厮_坡向水池,坡度為2%~5%?;厮_外圍應有防止周圍地面水流入水池的截水溝。13、噴水冷卻池出水口處要有攔污設施。14、寒冷地區的噴水冷卻池應采取以下防凍措施:1進水干管上設旁流水管,旁流水管的排水點應于水池出水口的對面一側。2干管及配水管上的閘閥應安裝防凍放水管或采用其他保溫措施。
從上述討論可知,水的冷卻過程是通過蒸發散熱和傳導散熱兩個綜合作用的結果。現按圖4-5在不同溫度下,論述其蒸發散熱與傳導散發的不同情況。1、圖4-5中①,tfθ在tfθ的條件下,蒸發散熱與傳導散熱同時存在,并都從水面向空氣一個方向進行存在的Δt和ΔPq均為正值,兩者的總散熱量用H表示,則單位時間內從水面散發的總熱量為:這種情況下同時存在ΔPq和Δt為推動力的散熱,圖中Qu是蒸發散熱時被蒸發掉的水量,蒸發了多少水量Qu就帶走了多少熱量Hβ,故Qu與Hβ成正比Qu∞Hβ。2、圖4-5中②,tf=θ在tf=θ的條件下,說明Δt=0,不存在溫度差引起的傳導散熱的推動力,即傳導散熱Hα=0,水沒有熱量傳遞給空氣,空氣也沒有熱量傳遞給水,只存在蒸發散熱量Hβ,故得:H=Hβ傳導散熱保持平衡4-53、圖4-5中③,tf<θtf<θ時,則tf-θ=-Δt,說明空氣的熱量傳給水面,所以存在Hα值,但不是水面傳給空氣,而相反。但只要存在水面的蒸發散熱Hβ,并且HβHα,那么總散熱量H為正值,即:H=Hβ-Hα04-64、圖4-5中④,tf=τ<θτ是濕球溫度,水冷卻的極限值。在圖4-5③中,tf<θ,但還沒有達到tf=τ,雖然水冷卻很緩慢,但還是冷卻的,現在到了tf=τ<θ,水的溫度就停止下降了,其理由從散熱量來說,因為這時候,水向空氣的蒸發散熱量Hβ與空氣傳導給水的熱量Hα處于平衡狀態平衡狀態是指兩者傳導的速度相等,不是處于停止狀態,即Hα=Hβ,而使H=0,這時水面的溫度tf就是空氣的濕球溫度τ,溫度τ稱為水的冷卻極限。從上述分析的四種情況可見:希望水在冷卻塔中的冷卻屬于第一種情況,因為既有蒸發散熱Hβ,又有傳導散熱Hα,水的冷卻效果好;在無法達到圖4-5①要求時,則希望水的冷卻狀況為圖4-5②,雖然這時Hα=0,但存在H=Hβ,即以蒸發散熱為主。而夏天炎熱的情況下,水面溫度tf與空氣干球溫度θ比較接近,故傳導散熱在總散熱量H中僅占10%~20%,而蒸發散熱在H中約占80%~90%,所以夏天水在冷卻塔中的冷卻基本上屬于圖4-5②的情況。冷卻塔的設計也是按夏季的情況即不考慮傳導散熱量Hα=0,只考慮蒸發散熱量Hβ進行的,通常指的標準型冷卻塔Δt=t1-t2=5℃,就是只考慮蒸發散熱的結果,沒有考慮傳導散熱Hα。圖4-5③的情況,一般來說不希望出現,但少數地區是存在的,如重慶、武漢、南京、杭州、南昌等地,夏季有幾天的空氣溫度很高,tf與θ更為接近,故按上海的氣象參數一般τ=28℃,θ=31、5℃設計的冷卻塔,在這些地方,這幾天的冷卻效果達不到Δt≠5℃,即t1-t2=Δt<5℃,但水還是得到冷卻的,就是冷卻效果差。如果這些地方夏季都要達到Δt=5℃,那么塔體要放大,填料要增高,風量要增加等,是非常不經濟的。圖中4-5④是沒有意義的,因冷卻效果=0。在冬季tf與θ之間溫差很大即Δt=tf-θ很大,這就是溫差引起的傳導散熱的推動力很大,故傳導散熱量Hα在總散熱量H中可達50%,嚴冬時可達70%,在冬季,Hα冬Hα夏,Hβ冬Hβ夏,所以總散熱量H冬H夏,冬季冷卻效果特別好。但無論如何,對冷卻塔來說,夏天通常為HβHα,冬季Hβ≈Hα,Hβ越大,效果好,這是因為水的汽化熱為597、3kcal1kg0℃的水汽化為0℃的水蒸氣放出的熱量,而水的比熱為1kcalkg,這就是說1kg水全部被汽化可帶走幾乎為600kcal的熱量,那么1kg水中有1%被汽化即Qu=1100kg可帶走6kcal的熱量,則就可以使1kg水的溫度降低6℃。
上一篇:塔高溫冷卻維修
噴水冷卻池噴水冷卻池雖然劃分在水滴水膜冷卻中,但實際上是水滴冷卻與水面冷卻相結合,而且往往是水面冷卻降溫比水滴冷卻降溫大。從熱水管噴嘴噴出的水滴,雖然噴水冷卻池剖面示意增加了水與空氣接觸的表面積,有利
循環冷卻水水源地面水、地下水、海水等都可以作為冷卻水水源。但作為循環冷卻水,不同的工業、不同的生產設備、、不同的換熱器等,其循環冷卻水的水質要求也有所不同,不論哪種水源,都應進行凈化處理,達到符合水質
冷卻塔節能節電節省投資節能節電,節省投資冷卻水循環利用節省水資源,同時節能節電、節省投資。這些是以冷卻水循環利用與直接排放進行比較的。為說清楚問題,以冷卻水量1萬td416th為例,進行以下方面比較。
冷卻塔熱力計算熱力學基本方程 1、方程右邊dt的積分就是進塔水溫t1與出塔水溫t2之差,即Δt=t1-t2,所以右邊的積分表示冷卻任務的大小。此冷卻任務的大小與i等空氣參數有關,而與冷卻塔的構造、尺
冷卻塔模型試驗目冷卻池的設計一般均以物理模型試驗方法來估算冷卻池的水力、熱力特性和確定合理的工程方案布置。電力部門在試驗室和原型條件下,進行試驗研究工作,建立了較符合當地實際情況的計算資料。模型試驗的
冷卻塔可冷卻循環水量式中H——冷卻池中散熱能力Mcald;Q——可冷卻水量m3d;C——水的比熱Mcalt·℃,取C=1;γ——水的密度tm3,取ρ=1;t1——熱水排水溫度℃;t2——取水溫度℃。冷
冷卻塔空氣分配裝置在冷卻塔中,除了水的均勻分配和造成較大的自由表面之外,同時還存在著空氣沿冷卻塔斷面上的均勻分配的問題,目前要解決氣流的均勻分布對逆流式冷卻塔來說是十分重要的。為此在逆流式冷卻塔中設空
冷卻塔水傳導散熱和流散熱傳導散熱也稱接觸散熱,有時也稱接觸傳導散熱。這種散熱是指熱水水面與空氣直接接觸時的傳熱過程,包括傳導和對流兩種傳熱形式。如水的溫度與空氣溫度不一樣,將會產生傳熱過程,當水溫高于